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A B S T R A C T   

Floating structures oscillate in waves, where these wave-induced motions may be critical for 
various marine operations. An important consideration is thereby given to the sea states at the 
planning and operating stages for an offshore project. The most important information extracted 
from a sea state is the directional wave spectrum, indicating wave direction, significant wave 
height, and wave spectrum peak period. Among several available methods of measuring and 
estimating the directional wave spectrum, the wave buoy analogy technique based on vessel 
motion responses is an in situ and almost real-time solution without extra costs of devices. If the 
forms of the wave spectra are not predefined in the estimation, the method is called a 
nonparametric approach. Its most remarkable advantage is the flexible form, but the smoothness 
should be regulated. After the discrete Fourier transform has been applied to the measured vessel 
motions, smoothing is necessary. However, this process results in disturbed vessel cross-spectra 
and a lowpass characteristic of the windowing function. This paper presents a nonparametric 
approach for directional wave spectrum estimation based on vessel motion responses. It in-
troduces novel smoothness constraints using Bézier surface and includes a more robust estimate 
using L1 optimization. Both techniques are applied to the wave buoy analogy for the first time. 
Numerical simulations are conducted to verify the proposed algorithm.   

1. Introduction 

Environmental conditions play significant roles in the design and safety of marine operations. Among these conditions, waves are 
sometimes the most critical factors influencing the dynamics of floating structures [1–3]. Although long-term statistics and short-term 
weather forecasts can supply a large amount of knowledge regarding the operation site, in situ prevailing sea state information is often 
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lacking. 
The wave spectrum can be measured directly or estimated indirectly by various approaches. Direct approaches include capturing 

the sea state by graphical or video measurements for example, satellites, unmanned aerial vehicles, or weather balloons. An overview 
of the sea state covering a large ocean area can be acquired. However, the slow update rate and long communication delay make these 
methods unsuitable for real-time applications. Moreover, sensors installed on the seabed, sea surface, and vessels are capable of 
capturing real-time wave information. Fixed-location sensors, such as the acoustic wave and current sensors and wave rider buoys, are 
preferred for long-term observation campaigns; however, their high installation costs limit their temporary utilization in short-term 
operations [4]. Conventional standard non-coherent wave radar estimates the wave field by measuring the backscatter from wave 
surface around the vessel in real time and collaborating with vessel motion measurements. Therefore, the estimation is influenced by 
the vessel motions. Besides, advanced coherent radar system can estimate the wave elevations directly by the Doppler effect. 
Micro-wave radar is successfully used to measure the surface elevations directly during the jacket topside installations with a reso-
lution of around 5 mm [5]. However, it requires additional costs associated with onboard devices. Alternatively, an indirect estimation 
approach is to use a floating vessel as a wave buoy, namely, the wave buoy analogy [6–8]. The theoretical foundations of the wave 
buoy analogy are the vessel cross-spectra for the motion responses and the response amplitude operators (RAOs). RAOs are considered 
to be known beforehand and can be calculated offline by hydrodynamic codes based on the vessel hull geometry and loading con-
ditions [9,10]. There is a well-known 3-to-1 mapping problem for using vessel motion measurements in the encountered frequency 
domain with forward speed in following sea conditions [11]. 

The estimation methods for the wave buoy analogy can be categorized into parametric and nonparametric approaches depending 
on whether the wave spectral shape is predefined. The nonparametric method (without predefined waveforms) relies on additional 
smoothness constraints but has the advantage of its flexible form [12,13]. However, it has limited performance at high-frequency wave 
components due to the nature of the vessel acting as a lowpass filter to wave loads. If the form of the wave spectrum is defined by 
explicit functions of a few variables, the approach is considered as a parametric method, where the use of fewer variables results in 
more efficient calculations. In this case, the smoothness constraint becomes implicit, and the high-frequency tail can be approximately 
formed. However, due to the fixed form, the selection of the spectral waveforms is crucial. When using a deep open sea assumption, 
certain form functions are normally applied, for example, 10-parameter spectrum [14], 15-parameter spectrum [15], and the 
JONSWAP spectrum [16]. In open seas, the wind speed is another supplementary source of data to estimate the mean wave frequency. 
Assuming that the sea is fully developed, the peak period of the wave spectrum is influenced by the mean wind speed [17]. More 
recently, the sea state has been estimated through neural networks and learning algorithms based on large amounts of training data 
[18,19]. 

It is assumed that linear transfer functions (i.e., RAO) can reasonably represent the relation between vessel motions and wave 
elevations, especially for moderate seas. Hence, vessel response spectra are linear transformation of the wave spectrum by RAOs. 
Onboard vessel motion measurements and wave information are used to reduce the uncertainties of vessel conditions and the cor-
responding RAOs. To calculate the wave spectrum, the linear equations are normally solved recursively; the most commonly used 
method is convex optimization [6]. Among the alternative methods, the Bayesian estimator has been applied in Ref. [20–22], and the 
Kalman filter has been used to recursively solve the equations [12,23–25]. If ship-to-ship interactions are assumed to be negligible, the 
estimates from a number of vessels can be fused because different vessels have diverse geometrical forms and can be sensitive to 
particular wave frequencies [26]. 

In this paper, we propose a nonparametric directional wave spectrum estimation approach based on vessel motion responses. It 
introduces novel smoothness constraints using Bézier surface and includes a more robust estimate based on L1 optimization. Both 
techniques are applied to the wave buoy analogy for the first time. The remainder of this paper is organized as follows. The preliminary 
information of the sea state estimation problem based on vessel motions is introduced in Section 2. In Section 3, improved smoothness 
conditions using a Bézier surface are presented, and L1 minimization is employed to enhance the solution robustness. Numerical 
examples are given in Section 4. Section 5 summarizes the paper. 

2. Problem formulation 

Hereafter, we refer to the sea state estimation problem as equivalent to the directional wave spectrum estimation problem. A 
stationkeeping scenario is considered, i.e., the ship is stabilized by a dynamic positioning (DP) system at the desired position and 
heading in the horizontal plane with zero advancing speed. The influence of the DP system to the heave, pitch, and roll motions is 
limited, and thus the effects of the DP system to these motions are neglected [27]. Hence, the Doppler effects on the encounter fre-
quency caused by the advancing speed are disregarded. The vessel motion response spectra can be calculated from the time series of the 
vessel motions over a period. If the period is short, then the solution is deemed an online (near real-time) estimate. The problem is to 
extract as much information as possible from the vessel motions and their spectra in the frequency domain. 

The estimation process is summarized as follows:  

1. Calculate the vessel motion RAOs offline by using seakeeping codes;  
2. Obtain the vessel motion signals, transfer the time-domain measurements into the frequency domain, and calculate the response 

cross-spectra for the specific degrees of freedom (DOFs);  
3. Construct linear equations of the vessel response cross-spectra from the RAOs and discretized directional wave spectrum;  
4. Solve the equations, and estimate the directional wave spectrum. 
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2.1. Construction of the linear equations between the wave spectrum and response spectra 

The translational and rotational motions (surge, sway, heave, roll, pitch, yaw) are indexed respectively by the index set J =

{1,2, 3,4, 5,6}. With a total number Nd of the selected DOFs, the set of the selected DOFs in the calculation is I⊆ J. The DOFs that are 
not being actively controlled are the most common choices. Taking a vessel with a speed of advance as an example, the sway, heave, 
roll, and pitch motions are typically used, i.e., I = {2,3,4, 5}. In the proposed stationkeeping scenario, I = {3,4, 5}. To estimate the 
wave direction, at least one DOF with asymmetric RAOs about the vessel centerline should be considered. Hence, either sway or roll 
motion, i.e., i = 2 or i = 4, must be included [6]. 

In this paper, the wave spectrum and motion response spectra are assumed to be linearly related by RAOs. The construction of the 
linear equations is based on several assumptions. First, the sea state is assumed to be stationary over the measurement period. In 
addition, the direction of incoming waves and vessel heading are assumed to be constant to simplify the problem, and the advancing 
speed is assumed to be zero so that the vessel motion spectra and RAOs are assumed to be consistent over the measurement period. All 
these assumptions ensure a stationary condition during the data collection period. 

There are two variables in the directional wave spectrum E(ω,α), i.e., the frequency ω and incoming wave direction α with respect to 
North (see Fig. 1). The wave direction is defined as the direction to which the waves are traveling. To discretize the directional wave 
spectrum, the wave frequency and direction are divided into a network of wave components. The indices m and k are defined to 
indicate the specific wave component as M = {m|1,⋯,Nω} and K = {k|1,⋯,Nβ}, where Nω denotes the total number of wave fre-
quency components and Nβ is the total number of wave directional components. When the vessel heading ψ and wave direction α 
remain constant in a short-term period, the wave heading β is defined as the angle between the longitudinal ship axis and the wave 
train approaching the vessel, i.e., 

βk : = αk − ψ. (1) 

For the sake of simplicity, β is considered hereafter, that is, the wave direction relative to the vessel heading is considered, e.g., β =

π denotes head sea. 
The directional wave spectrum E(ω, β) is assumed to be the superposition of products of long-crested wave spectra Qκ(ω) and 

spreading functions Nκ(β), i.e., 

E(ω, β) =
∑

κ
Qκ(ω)Nκ(β), (2)  

where Κ denotes the index of the wave components. Two components are enough to model most wave spectra, i.e., κ = 1 means the 
wind sea component and κ = 2 captures the swell component. 

In the frequency domain, the cross-spectra for vessel motion response and the directional wave spectrum are related by RAOs. 
RAOs, which are calculated by software for seakeeping analysis based on strip theory or 3D panel model such as ShipX and WAMIT, are 
complex-valued linear transfer functions, i.e., Φ(ω,β) = R(Φ(ω,β)) + iI(Φ(ω,β)), where R(Φ(ω, β)) and I(Φ(ω, β)) are the real and 
imaginary parts of RAO Φ(ω, β), respectively. These transfer functions show both amplitudes and phase information. Note that the 
applied RAOs often deviate from the truth due to the model simplification and uncertainties from the loading conditions. However, we 
assume that the RAOs are perfectly known, as common in literature [19,22,23,28]. 

Fig. 1. Definition of angles and discretization of the wave field.  
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A cross-spectrum for vessel motion response at a specific frequency ωm is the discretized integral over the wave heading β, i.e., 

Sij(ωm)=

∫π

− π

Φi(ωm, β)Φj(ωm, β)E(ωm, β)dβ (3)  

≈ Δβ
∑Nβ

k=1
NβΦi(ωm, βk)Φj(ωm, βk)E(ωm, βk),

where Sij denotes the cross-spectrum for motion response of the ith and jth DOFs, Φi denotes the transfer function of the ith DOF, Φ 
denotes the complex conjugate of Φ, and Φi(ωm,βk)Φj(ωm, βk) = R(Φi)R(Φj)+ I(Φi)I(Φj)+ i[I(Φi)R(Φj) − R(Φi)I(Φj)]. The cutoff 
frequency ωNω should be selected where the values of the spectrum are approximately zero, that is, S(ω) ≈ 0, when ω > ωNω . 

A linear equation can be constructed for both the real and the imaginary parts of Sij(ωm). For i = j, Sii ∈ R is a real number. For i ∕= j, 
Sij ∈ C is a complex number. Therefore, there are three parts in Eq. (3), i.e., Sii(ω), R(Sij(ω)), and I(Sij(ω)). For a specific frequency 
component ωm, there are a total of N2

d linear equations. Writing in a compact form yields 

bm =Amfm, (4)  

where bm ∈ RN2
d , Am ∈ RN2

d×Nβ , and fm ∈ RNβ , defined by 

bm(ωm) :=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

Sii(ωm)

⋮
R
(
Sij(ωm)

)

⋮
I
(
Sij(ωm)

)

⋮

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,  fm(ωm) :=

⎡

⎢
⎢
⎣

S(ωm, β1)

S(ωm, β2)

⋮
S(ωm, βNβ

)

⎤

⎥
⎥
⎦, (5)  

Am(ωm) : =

⎡

⎢
⎢
⎢
⎢
⎣

⋯ R(Φi(ωm, βk))
2
+ I(Φi(ωm, βk))

2 ⋯
⋮

⋯ R(Φi(ωm, βk))R
(
Φj(ωm, βk)

)
+ I(Φi(ωm, βk))I

(
Φj(ωm, βk)

)
⋯

⋮
⋯ I(Φi(ωm, βk))R

(
Φj(ωm, βk)

)
− R(Φi(ωm, βk))I

(
Φj(ωm, βk)

)
⋯

⎤

⎥
⎥
⎥
⎥
⎦
. (6) 

Combining all Nω frequencies in matrix form yields the final affine equation: 

b=Af , (7)  

where b = [b⊤1 , b⊤2 ,…, b⊤Nω
]
⊤
∈ RN2

dNω , A = diag{A1,A2,⋯,ANω} ∈ RN2
dNω×NβNω , and f = [f⊤1 , f⊤2 ,⋯, f⊤Nω

]
⊤
∈ RNβNω . 

For a ship with an advancing speed, Eq. (3) should contain three parts since an encounter frequency may be mapped to three wave 
frequencies for following sea conditions. However, this only complicates the construction of matrix A in Eq. (7). Hereafter, we focus on 
solving Eq. (7). 

2.2. Problem statement 

The basis of the directional wave spectrum estimation problem is to reconstruct vector f from measured vector b and known matrix 
A by solving the linear equation (7). Since N2

dNω < NβNω normally holds, the dimension of vector b is smaller than that of vector f , so 
the number of unknown variables is larger than the number of known measurements. This indicates an infinite number of solutions to 
Eq. (7). One should note that the least square (LS) methods, such as the pseudoinverse, are not feasible since the properties of a physical 
wave spectrum impose implicit constraints on the smoothness and non-negativeness. 

To solve Eq. (7), a typical cost function for convex optimization is given by 

min
f

‖Af − b‖r1
p1
+ ||CLf ||r2

p2
, (8a)  

subject  to f ≥ 0, (8b)  

f1 = 0, (8c)  

fNω = 0, (8d)  

where r1 and r2 are the powers. ||x||p = (|x1|
p
+ ⋯ + |xn|

p
)
1/p denotes the p-norm of a vector x ∈ Rn. In earlier studies, p = 2 is usually 

selected. A more general form using the p-norm is employed here for the first time. The diagonal elements in the diagonal positive 
definite matrix C are the weights of the constraints (penalty parameters). The directional wave spectrum is believed to be smooth and 
continuous. Matrix L contains the smoothness constraints. There are three smoothness conditions, i.e., smoothness of frequency, 
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Fig. 2. Bézier curve by a series of control points P0, P1, ⋯, P5.  

Fig. 3. Bézier surface with a number of control points.  

Fig. 4. The network of control points using Bézier surface in the proposed algorithm.  
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smoothness of direction, and zero energy at ω = 0 and ω = ∞. In Eq. (8a), the first data-fitting term measures the distance between b 
and Af in the Lp1 -norm sense, and the second term is a Lp2 penalty representing the smoothness constraints. Constraints (8c) and (8 d) 
are optional; alternatively, they can be integrated into matrix L. 

In earlier works, L2 regularization was commonly used to solve linear equation (7) using the quadratic-form cost function in (8), i. 
e., (p1, r1, p2, r2) = (2, 2,2, 2). This problem is categorized as an L2-based Tikhonov regularization problem [29], also named ridge 
regression, where CL is the Tikhonov matrix. 

The proposed approach faces several challenges in early studies. First, the frequency smoothness and wave heading smoothness 
constraints are optimized separately. The smoothness condition at a discrete node depends on constant slopes to its two neighbor nodes 
in frequency- and heading-axes respectively, i.e., 

Fig. 5. The construction flow chart of matrix CL.  
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E(ωm+1, βk) − E(ωm, βk)

ωm+1 − ωm
=

E(ωm, βk) − E(ωm− 1, βk)

ωm − ωm− 1
, (9a)  

E(ωm, βk+1) − E(ωm, βk)

βk+1 − βk
=

E(ωm, βk) − E(ωm, βk− 1)

βk − βk− 1
. (9b) 

The smoothness of the 2D spectrum surface is not considered. Moreover, the effects of farther nodes in both axes are not considered. 
Calculation of cross-spectra can also be challenging due to the discrete sampling of sensor signals in time domain. The cross-spectra 

are calculated through discrete Fourier transforms, such as the fast Fourier transform (FFT), of discrete measurements. However, the 
FFT outputs are not smooth and thereby are not suitable inputs to the following algorithm directly since there exists noise in the 
resulting cross-spectra. Smoothing or multivariate autoregressive (MAR) modelling must be conducted. They are also subject to dis-
turbances and a lowpass characteristic of the windowing function are left in the resulting cross-spectra. 

Measurement noise and the involvement of observers are another problem. The vessel motions are measured by sensors, which also 
introduce measurement noise and bias. Consequently, sensor noise introduces additional power into all frequencies, especially the 
high-frequency part, of the long-crested wave spectrum. Because a vessel is not sensitive to high-frequency wave components, the 
power of high-frequency responses is relatively low. Hence, a small disturbance in the high-frequency part of the response spectrum 
may result in a relatively large estimation error. Besides, state estimators or observers are adopted to filter the sensor noise and es-
timate the unmeasured states as some states are expensive or impossible to be directly measured by a sensor, such as velocity. 
However, the observers cannot fully eliminate the measurement noise and bias caused by the sensors. An observer has the charac-
teristics of a lowpass filter, which eliminates high-frequency information and causes the spectra of the vessel motions to be biased and 
shifted. 

The forth challenge comes from the selection of weights in C, which require tuning and can greatly influence the estimate. A small C 
results in loose constraints and “noisy” estimates. However, an excessively large C has a negative effect on the fitted spectrum peak, 
which diminishes the amplitude of the estimated peaks. In practical applications, C is unlikely to change between different scenarios, 
but we assume that C stays within a range of reasonable values, although the range can be only roughly known. Therefore, a wave 
spectrum estimation approach providing stable and accurate estimates with different levels of disturbances in the cross-spectra is 
valuable. 

All these disturbances degrade the precision and robustness of the estimate. 
Taking f as the signal vector and b as the measurement vector, we note that the nonparametric sea state estimation approach is very 

similar to the signal recovery problem in the realm of signal processing. Since the wave spectrum mainly stays in a directional range 
and the components in a wide range of wave directions are almost zero, the wave spectrum information b is assumed to be sparse. 

The objective of this paper is to improve the smoothness and robustness in the reconstruction of the directional wave spectrum from 
measured vessel motions. The main contributions are the employment of a Bézier surface and L1 optimization for sea state estimation 
using vessel motions. We seek the proper ways to (1) improve the smoothness of the estimated spectrum and (2) limit the influences of 
disturbances in the vessel motion response spectra without focusing too much on fine-tuning the weight parameters in C. 

3. Bézier surface and L1 optimization 

3.1. Bézier curve and Bézier surface 

A Bézier curve is a 2D curve with excellent linear interpolation properties. The curve between the starting point and endpoint is an 
affine combination of the positions of a series of control points, and the coefficients are simple polynomial functions. This technique 
has been widely used in various graphic design programs and computer-aided design programs. 

An example of a Bézier curve is illustrated in Fig. 2. The position of a point on a Bézier curve is given by 

P(μ)=
∑n

γ=0
bγ(μ)Pγ , (10)  

where n is the polynomial degree, γ ∈ {0,1,⋯, n} is the index of the control points, Pγ denotes the position of the γ-th control point, and 

Fig. 6. Non-zero elements in the resized matrix of f .  
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μ ∈ [0,1] is a variable denoting the relative position between the starting point and endpoint. μ = 0 is the staring point, and μ = 1 is the 
endpoint [30]. The Bernstein polynomial for the point γ is given by 

bγ(μ) =
(

n
γ

)

μγ(1 − μ)n− γ
, (11)  

where 
(

n
γ

)

= n!
γ!(n− γ)!. 

The Bernstein polynomial bγ(μ) can be considered as the weights for the specific points on the curve. A control point gives higher 
weights to the closer points. Hence, the influence from distant control points is limited. 

Let μγ :=
xγ − x0
xn − x0

. Specifically, μγ =
γ
n if the control points are evenly distributed along the x-axis. To ensure local smoothness, the goal 

is to minimize the difference between P(μγ) and Pγ. The constant-slope criterion in Ref. [6] is a special application of a Bézier curve 
with n = 2, i.e., Pk− 1 − 2Pk + Pk+1 = 0. This condition is applied to either the wave frequency ω or the wave heading β individually. 

Unlike [6], we aim to improve the smoothness constraints to guarantee bidirectional 2D smoothness by employing a Bézier surface 
(see Fig. 3). A network of control points on the Bézier surface is indexed by (γ1,γ2), where γ1 ∈ {0,1,⋯, n1} and γ2 ∈ {0,1,⋯,n2}. A 
Bézier surface is the Cartesian product of two orthogonal Bézier curves, given by 

P(μ1, μ2)=
∑n1

γ1=0

∑n2

γ2=0
Bγ1γ2 (μ1, μ2)Pγ1γ2 , (12)  

where Bγ1γ2 (μ1, μ2) = bγ1 (μ1)bγ2 (μ2) and the subscripts 1 and 2 are the indices of the surface axes. At the edges of the surface, i.e., μ1 ∈

{0,1} or μ2 ∈ {0,1}, all the points (except the corner points) are fitted as a Bézier curve. 

Fig. 7. Motion RAOs of a supply vessel.  

Table 1 
The environmental parameters in the sensitivity study.  

Sea state no.  Hs (m)   Tp(s)   β (deg)  s 

κ = 1  κ = 2  κ = 1  κ = 2  κ = 1  κ = 2  κ = 1  κ = 2  

1  1.92 0.84  7.6 14  111.1 282.6  17 57 
2 0.57 1.72 14.6 8.7 49.7 93.1 10 59 
3 0.72 1.34 15.7 14.9 256.3 281.1 16 45 
4 0.53 0.19 10.8 10.9 245.8 169.6 11 48 
5 1.42 0.86 9.9 8.2 274.8 80.3 17 22 
6 1.03 0.27 7.5 8 138.8 289 13 40 
7 1.25 0.83 10.2 13.4 99.6 239.1 19 32 
8 0.11 1.03 13.4 13.9 221.2 21.6 12 41 
9 0.35 1.82 13.1 11.1 205.5 127.2 15 26 
10 0.22 1.4 13.1 15.9 305.5 197.6 14 27 
11 1.46 0.91 8.2 7.6 274.4 193 14 27 
12 1.81 0.95 12.5 6.2 280.3 125.5 17 32 
13 0.45 1.86 6.4 6.6 66.2 354 19 27 
14 0.87 0.41 10 9.4 187.8 161.6 16 32 
15 0.48 0.54 15.3 9.8 336.8 214.1 12 59 
16 0.79 1.34 12.9 7.3 223.1 117 14 28 
17 0.88 0.04 6.7 8.2 65.4 343.3 10 36 
18 0.84 0.8 14.3 14.7 313.2 176.1 19 39 
19 0.89 0.58 15.1 11.4 307.4 231.2 19 37 
20 1.24 0.02 13.1 6.3 104.9 50.4 14 41  

Table 2 
Selections of cost functions in eq. (8).  

Index of cost function p1  r1  p2  r2  

1 1 1 1 1 
2 1 1 2 1 
3 1 1 2 2 
4 2 1 1 1 
5 2 1 2 1 
6 2 1 2 2 
7 2 2 1 1 
8 2 2 2 1 
9 2 2 2 2  
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Fig. 8. Vessel motion response spectra with knowledge of perfect measurement in Sea state 1.  

Fig. 9. Wave spectrum estimates of Sea state 1 based on perfect motion spectra.  
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Fig. 10. Vessel motion response spectra with perfect measurement in Sea state 2.  

Fig. 11. Wave spectrum estimates of Sea state 2 based on perfect motion spectra.  
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Table 3 
MSE of the estimate error with perfect response spectra in 20 sea sates.  

Sea state no.  Perfect measurement 

(1,1,1,1) (2,1,1,1) (2,2,2,2) 

1  9.11e-3 8.74e-3 1.54e-2 
2  4.57e-2 4.08e-2 5.96e-2 
3  1.62e-2 1.33e-2 2.50e-2 
4  3.26e-5 3.20e-5 1.38e-4 
5  6.24e-3 4.05e-3 1.42e-2 
6  8.68e-4 8.47e-4 3.99e-3 
7  7.21e-3 6.09e-3 1.62e-2 
8  7.95e-3 6.48e-3 1.41e-2 
9  1.58e-2 1.28e-2 2.73e-2 
10  1.84e-2 1.27e-2 3.41e-2 
11  5.68e-3 5.60e-3 7.14e-3 
12  9.30e-3 8.15e-3 2.14e-2 
13  1.01e-1 9.48e-2 1.07e-1 
14  2.07e-3 4.49e-4 5.00e-3 
15  7.35e-4 6.81e-4 1.99e-3 
16  5.97e-3 6.83e-3 1.30e-2 
17  2.83e-4 3.08e-4 1.82e-3 
18  9.71e-3 8.81e-3 1.28e-2 
19  4.19e-3 2.19e-3 6.61e-3 
20  6.31e-4 4.14e-4 4.29e-3  

Fig. 12. Noisy vessel motion spectra in Sea state 1, noise level 3%.  
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Fig. 13. Wave spectrum estimates of Sea state 1, noise level 3%.  

Fig. 14. Noisy vessel motion spectra in Sea state 1, noise level 6%.  
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Fig. 15. Wave spectrum estimates of Sea state 1, noise level 6%.  

Fig. 16. Noisy vessel motion spectra in Sea state 1, noise level 10%.  
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Fig. 17. Wave spectrum estimates of Sea state 1, noise level 10%.  

Fig. 18. Wave spectrum estimates based on perfect and disturbed motion spectra (Sea state 3).  
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The smoothness constraints therefore minimize the distances between the control points and each corresponding points on the 
fitted surface, i.e., 

min

(
∑

γ1 ,γ2

⃒
⃒
⃒
⃒
⃒
P
(
μ1,γ1

, μ2,γ2

)
− Pγ1γ2 |

p2

)1/p2

. (13) 

When n1 ≥ 2 and n2 ≥ 2, the position of a point on the surface (but not on the edges) is influenced by the n1n2 control points. There 
exist (n1n2 − 4) constraints since the positions of the four corners are fixed. 

For the sea state estimation algorithm presented in Section 2, the construction of the selected node is illustrated in Fig. 4. The 
variables ω and β are discretized, and the resulting discrete sequences are placed as the horizontal and vertical axes. The intersections 
of the discrete wave frequencies and directions form an Nω × Nβ mesh with white nodes. The mesh actually represents a side surface of 
a cylinder since β = 0 is the same as β = 2π. We consider the size of a Bézier surface to be n1 × n2, as shown by the blue, yellow, and red 
nodes in Fig. 4. 

The top-left corner (m, k) can be started at k ∈ K and m ∈ M/{Nω − n1 + 1,⋯,Nω}. No constraint is given to the blue nodes since 
the corner’s positions are fixed. The yellow nodes are on the edges, and the red nodes are on the surface. Different weights c(γ1, γ2) > 0 
can be given to different types of points. The algorithm is summarized in Fig. 5. For each surface, the values of μ1 and μ2 are constant 
for a specific red node. Since the axes are equally divided, μ1 =

γ1
n1 

and μ2 =
γ2
n2

. For one specific yellow and red node with the location 

(γ1,γ2), the corresponding line in matrix L can be calculated. The element with index (m+γ1 − 1)Nβ + k + γ2 equals Bγ1γ2

(
γ1
n1
,

γ2
n2

)

. Since 

each point is considered several times on different Bézier surfaces, the weight c should be approximately selected. 

3.2. L1 optimization 

A sparse representation means that a small number of coefficients contribute a large proportion of the total energy. This is very 
relevant for a wave spectrum distribution. Taking the wave spectrum as an example and rewriting the corresponding vector f into 

Fig. 19. Wave spectrum estimates based on perfect and disturbed motion spectra (Sea state 6).  
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matrix form, the element in the resulting matrix is set to zero when it is smaller than a small positive constant ε. The sparsity patterns 
are visualized in Fig. 6 with respect to different values of ε. The black squares in Fig. 6 correspond to the nonzero wave components, 
which constitute the powerful components in the wave spectrum; i.e., the power of each of these components is large enough to be 
noticed. The superposition of these wave components produces the wave field. Increasing the threshold ε increases the sparsity in f . 
However, we note that increasing the sparsity only filters some less powerful wave components, and the dominating wave components 
are not seriously affected. Increasing the sparsity reduces the likelihood of the unnecessarily rising parts in the estimates, especially in 
the high-frequency part. Therefore, estimates can be achieved with greater robustness by increasing the sparsity. 

Several optimization approaches are widely applied to enhance the sparsity of recovered signals [31]. The L0 measure, a traditional 
method, counts the number of the nonzero elements. However, the L0-norm is NP-hard with poor behavior in the presence of noise, 
and its derivatives are always zero. Hence, the L0-norm is not commonly used in optimization. 

To improve the estimation robustness and reduce the influences of disturbance in the motion response spectra, the L1-norm is 
applied instead of the L2-norm, i.e., p1 = r1 = 1 and p2 = r2 = 1 in Eq. (8), namely sparse regression. 

Sparse regression has several advantages. Foremost among them, L1 optimization is more robust to wildpoints; that is, L1-norm 
regularization is less sensitive to outliers in disturbed response spectra [24]. In addition, the influences of the imperfect and noisy 
motion response spectra are better limited. Taking the data-fitting term ||Af − b||p1 

into account, the L1-norm can avoid overfitting 
problem and increase sparsity. 

Considering the smoothness constraints ‖CLf‖p2
, the L1-norm reduces the effects of the constraints at the local peaks in the wave 

spectrum, resulting in smaller reduction in the local peaks of the estimated wave spectrum. For both the data-fitting term and the 
smoothness constraints in (8), the possible choices of the loss function are the Euclidean distance, the mean squared error, and the sum 
of absolute errors, i.e., (p1, r1) ∈ {(2,1), (2,2), (1, 1)} and (p2, r2) ∈ {(2,1), (2,2), (1, 1)}. The best combination of (p1, r1) and (p2, r2)

will be discussed in the next section. 
Although L1 optimization is not convex and may pose challenges to the solver, it can be changed into a classic programming 

problem. There are a number of methods to solve L1-norm regularized problems, such as changing the variables and using quadratic 
programming or interior point methods [32]. For instance, if (p1,r1,p2, r2) = (2, 2,1, 1), the problem is known as a least mixed norm 
(LMN) solution, or basis pursuit denoising [33,34]. The L2-norm can be expanded as ‖Af − b‖2

2 = f⊤A⊤Af − 2b⊤Af + b⊤b, and the 

Fig. 20. Wave spectrum estimates based on perfect and disturbed motion spectra (Sea state 14).  
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positive constant b⊤b can be removed. The vector v := CLf and two auxiliary vectors v+ := max{0, v} ≥ 0 and v− := max{0, − v} ≥ 0 
are defined such that v = v+ + v− > 0. Hence, |CLf | = 1⊤v+ + 1⊤v− . The cost function (8a) for the augmented unknown variables with 
additional inequality constraints becomes 

min
f ,v+ ,v−

f ⊤A⊤Af − 2b⊤Af + 1⊤v+ + 1⊤v− (14a)  

s.t. CLf = 1⊤v+ + 1⊤v− (14b)  

f ≥ 0 (14c)  

v+ ≥ 0 (14d)  

v− ≥ 0, (14e)  

where 1 is a column vector of ones. Rewriting (14) into a compact form with x = [f⊤, v+⊤, v− ⊤]
⊤ yields 

min
x

x⊤A x + B x (15a)  

s.t. C x= 0 (15b)  

x ≥ 0 (15c)  

where A =

⎡

⎣
A⊤A 0 0
0 0 0
0 0 0

⎤

⎦, B = [ − 2b⊤A 1⊤ 1⊤ ], C = [CL − I − I ], and I is the identity matrix. Since A is symmetric positive 

semidefinite, problem (15) is convex and can be solved by typical algorithms for convex optimization. 

Fig. 21. Wave spectrum estimates based on perfect and disturbed motion spectra (Sea state 16).  
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4. Simulation results 

4.1. Overview 

Numerical simulations are conducted to verify the algorithm. A double-peak spectrum E(ω, β) is adopted. The directional spectrum 
is a superposition of two spectra, i.e., κ = 2. There are three parameters for each Qκ, i.e., the wave height Hs, peak wave frequency ωp =
2π
Tp

, wave heading β, and coefficient s which controls the sharpness of the corresponding spectrum [35]. The equation of a long-crested 
wave spectrum is given by 

Qκ(ω)=
1
4

H2
s,κ

[
(λκ + 0.25)ω4

p,κ

]λκ

Γ(λκ)ω4λκ+1 exp
[
− (λκ + 0.25)

(ωp,κ

ω

)4]
, (16)  

where Γ( ·) is the gamma function. We choose λ1 = λ10 and λ2 = λ20exp(λ21Hs,2), where λ10 = 3.0, λ20 = 1.54, and λ21 = − 0.062. 
The spreading function is given by [36]. 

Nκ(α)=
Γ(sκ + 1)

2
̅̅̅
π

√
Γ(sκ + 0.5)

cos2sκ
(α

2

)
, (17)  

where sκ is a coefficient controlling the spreading. 
A 6360-tonne supply vessel with a length between perpendiculars of 82.8 m, a breadth of 19.2 m, and a draught of 6 m is adopted as 

an example [37]. The vessel is stabilized at the desired position and heading by a DP system. The ship motion cross-spectra are 
calculated based on motion RAOs calculated by ShipX [38], as shown in Fig. 7. We select I = {3,4,5}, Nω = 30, Nβ = 20, and n1 =

n2 = 3. 
The following simulated cases are conducted, (1) perfect response spectra, (2) disturbed response spectra, and (3) response spectra 

filtered by a lowpass filter. In the simulations, different levels of white noises and a lowpass filter are added directly to the cross-spectra 

Fig. 22. Wave spectrum estimates based on perfect and disturbed motion spectra (Sea state 20).  
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calculated in the frequency domain, instead of generating the time series and calculating the cross-spectra from the time-domain 
measurements. This is because the selection of smoothing techniques couples with the proposed algorithm. It will influence the 
cross-spectra and consequently affect the final estimation. Hence, it would be difficult to validate the performance of the proposed 
algorithm quantitatively if we choose a specific smoothing technique. 

The environmental parameters are tabulated in Table 1. The significant wave heights are randomly selected between 0 and 2 m. The 
wave spectral peak periods stay in the range of 6–16 s. The coefficients s1 and s2 are selected from 10 to 15 and from 25 to 65, 
respectively. Mean square errors (MSEs) of the estimation errors are used to analyze the results. 

In the simulations, a number of cost functions are adopted by using different values of p1, r1, p2, and r2. The cost functions are 
indexed by (p1, r1,p2, r2); see Table 2. 

4.2. Simulation result 1: perfect response spectra 

The perfectly measured response spectra and the estimation results, e.g., for Sea states 1–3, are presented in Figs. 8–11. The 
colorbar in each image ranges from 0 to the upper limits of the true wave spectrum. Hereafter, the colors of values larger than the 
colorbar upper limits remain the same as that of the upper limit (yellow in the figures). After tuning the coefficients C in different cost 
functions, the estimates from all cost functions agree with the in situ sea state well. 

The results of three representative approaches are listed in Table 3. L1 optimization (e.g., (p1, r1,p2, r2) ∈ {(1,1, 1, 1),(2, 1,1, 1)}) 
provides similar results as the LS method ((p1, r1,p2, r2) = (2,2, 2,2)) without degrading the estimation performance (see Figs. 9 and 
11). At this time, it is still difficult to judge which cost function is the best. 

The smoothness constraints of the Bézier surface work well to regulate the wave spectrum. Because of the smoothness constraints, 
the peak of the spectrum estimate is slightly limited. When decreasing the value of C, the estimated peak approaches the real value. 
However, the increase is no longer remarkable when C becomes smaller than a certain level. 

In [6], the constraint in Eq. (8d) are not considered, resulting in a faster computational speed and a more stable convex optimi-
zation problem. However, the lack of nonnegative constraints causes meaningless negative estimates at the low and high frequencies. 
We note that the proposed method improves the estimation performance by only slightly slowing down the computational speed. The 

Fig. 23. Wave spectrum estimates based on perfect and disturbed motion spectra (Sea state 17).  

Z. Ren et al.                                                                                                                                                                                                             



Marine Structures 76 (2021) 102904

21

Fig. 24. Wave spectrum estimates based on perfect and disturbed motion spectra (Sea state 19).  

Table 4 
MSE of the estimate error in 20 sea sates.  

Sea state no.  Noise 3% Noise 6% Noise 10% 

(1,1,1,1) (2,1,1,1) (2,2,2,2) (1,1,1,1) (2,1,1,1) (2,2,2,2) (1,1,1,1) (2,1,1,1) (2,2,2,2) 

1  1.25e-2 3.07e-2 1.80e-2 1.02e-1 1.66e-1 3.12e-1 1.08 8.64e-1 18.3 
2  4.94e-2 9.62e-2 6.24e-2 4.58e-2 1.06e-1 8.21e-1 4.34e-2 8.93e-2 5.13e-2 
3  1.89e-2 5.22e-2 2.28e-1 2.03e-2 3.99e-2 33.6 2.19e-2 3.98e-2 5.79 
4  7.43e-5 1.08e-4 1.41e-4 7.43e-5 1.41e-4 1.32e-4 2.92e-4 2.55e-4 2.70e-4 
5  7.31e-3 2.22e-2 1.84e-2 3.41e-2 4.74e-2 8.69e-2 1.19e-2 1.89e-2 17.3 
6  9.78e-4 3.48e-3 3.95e-3 3.18e-3 7.03e-3 5.70e-3 1.09e-3 7.78e-3 1.59e-2 
7  8.34e-3 2.45e-2 1.73e-2 8.52e-3 3.04e-2 3.86e-2 9.93e-3 2.59e-2 7.92 
8  8.61e-3 1.50e-2 1.43e-2 1.79e-2 3.20e-2 4.84e-2 8.95e-3 2.02e-2 1.48e-2 
9  4.17e-2 4.80e-2 3.29e-2 1.11 3.26e-1 9.75 2.43e-2 6.14e-2 2.95e-2 
10  2.02e-2 4.64e-2 3.49e-2 2.79e-2 5.13e-2 3.65e-2 6.55e-2 7.43e-2 47.8 
11  1.33e-2 1.68e-2 9.84e-3 1.02e-2 1.35e-2 1.08e-2 2.63e-2 1.97e-1 6.72e-1 
12  1.08e-2 5.16e-2 4.15e-2 1.43e-1 9.55e-2 4.40 3.12e-2 6.95e-2 2.91e-2 
13  1.01e-1 1.02e-1 1.07e-1 1.02e-1 1.06e-1 1.08e-1 1.02e-1 1.09e-1 1.09e-1 
14  2.33e-3 5.24e-3 5.32e-3 3.00e-3 7.65e-3 6.39e-3 4.78e-3 8.38e-3 6.33e-3 
15  2.19e-3 1.92e-3 1.99e-3 1.07e-3 2.06e-3 2.05e-3 1.18e-3 2.20e-3 2.10e-3 
16  7.76e-3 1.61e-2 1.48e-2 1.06e-2 1.60e-2 2.15e-2 1.02e-2 1.87e-2 1.13e-2 
17  2.04e-3 1.41e-3 1.74e-3 5.49e-4 1.59e-3 1.35e-3 6.24e-4 2.17e-3 1.44e-3 
18  9.66e-3 1.49e-2 1.31e-2 1.14e-2 1.59e-2 4.28e-2 1.38e-2 1.75e-2 4.64e-1 
19  5.03e-3 8.13e-3 6.74e-3 4.41e-3 8.50e-3 6.57e-3 5.25e-3 9.05e-3 1.48 
20  1.04e-2 1.15e-2 5.63e-3 1.05e-2 1.34e-2 1.29e-2 4.17e-3 1.24e-2 4.48e-2  
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computational time difference is not large due to the fast-developed hardware advancement unless the number of variables is 
extremely high. Using a computer with an Intel Core i7-4790 CPU @ 3.6 GHz, it took up to 12 s to execute the calculation. 

In the following simulations, the values of elements in matrix C remain the same as those in Simulation 1. 

4.3. Simulation result 2: response spectra with disturbances 

In this section, a series of simulations are conducted to evaluate the robustness of the cost functions using noisy motion cross- 

Fig. 25. Comparison of different estimate approaches with response spectra filtered by a first-order lowpass filter (Sea state 1).  
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spectra. White noise is added to the motion response spectra to simulate the disturbance caused by the FFT. The amplitude of the white 
noise is a ratio of the corresponding spectral peaks; see Figs. 12, 14, and 16. The noise levels are adopted as 3%, 6%, and 10% of the 
corresponding spectral peaks. The black and blue nodes denote the perfectly and noisily sampled data, respectively. Since the noise is 
randomly generated for different noise levels, the estimates of a scenario with a lower noise level are, normally but not definitely, 
better than those with a higher noise level. 

The corresponding estimates are presented in Figs. 13, 15, and 17, respectively. Although all the cost functions can estimate the 
directional wave spectrum with perfect motion cross-spectra, their performance is very different with disturbed spectra. From the 

Fig. 26. Comparison of different estimate approaches with response spectra filtered by a first-order lowpass filter (Sea state 4).  
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results, the estimates deviate by the disturbed cross-spectra. The cost functions giving the most accurate estimates are (p1,r1,p2,r2) ∈

{(1,1,1, 1), (2, 1,1, 1), (2, 2,2, 2)}. This conclusion holds for all the 20 sea states. More results can be found in Figs. 18–24. The de-
viations increase with the growing amplitude of disturbances. 

The estimate given by the cost function with (p1, r1, p2, r2) = (2, 2, 2,2) is risky. When using the LS method, an accurate estimate 
appears only with a minor possibility (Figs. 23 and 24). Whereas most time, the estimates of (p1, r1, p2, r2) = (2, 2,2, 2) no longer agree 
with those of the other two cost functions (Figs. 18–22). Very small flaws in the motion spectrum leads to large errors in the estimated 
sea states. The estimates drift away from the real values, showing the LS method is not robust when addressing disturbances in motion 

Fig. 27. Comparison of different estimate approaches with response spectra filtered by a first-order lowpass filter (Sea state 5).  
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response spectra. In contrast, the cost functions with (p1, r1, p2, r2) ∈ {(1,1,1, 1), (2, 1,1, 1)} still identify the main trend of the wave 
spectrum. 

Although, the performance of cost function (p1, r1, p2, r2) = (2, 2, 2,2) using disturbed measured motion response spectra can be 
improved by increasing the value of C, a reduction in the estimated peaks was observed. Hence, increasing the value of C only limits the 
estimation deviation but cannot guarantee reasonable estimates. For some scenarios, such as the perfect and 3% noise level in Fig. 19, if 
the amplitude of the minor component is very small, L1 optimization still can estimate these components, while LS method can only 
estimate one major component. 

Furthermore, the estimates of L1 optimization is “cleaner” showing a higher sparsity; see Figs. 21 and 23. The dark blue lines are 
less dense for the scenarios using (p1, r1, p2, r2) = (1,1, 1,1), i.e., the low-amplitude errors far away from the peak frequencies are 
limited. The energy in the estimated shows a better concentration when using (p1, r1,p2, r2) = (1,1, 1,1). 

The MSE of estimate error are listed in Table 4. The cost function (p1, r1, p2, r2) = (1, 1,1, 1) has a lower deviation than the other 
cost functions, as expected. To summarize, the L1-norm improves the solution robustness against disturbances in the measured motion 
response spectra. 

4.4. Simulation result 3: response spectra filtered by a lowpass filter 

Another simulation is conducted to evaluate the influence of the lowpass filter problem caused by observers. The response spectra 
are filtered by a first-order lowpass filter H(s) = 1

Ts+1 with T = 1.2 s. The filter response spectra and the corresponding estimates are, for 
example, presented in Figs. 25–27. The lowpass filter only reduces the amplitudes of the response spectra, resulting in a scaled-down 
estimate of directional wave spectrum, but the effect is limited. To illustrate the performance of the algorithms in a more obvious way, 
the value of the cutoff frequency 2π/T is selected to be smaller than that in practical measurements purposely. 

All three cost functions, to some degrees, manage to estimate of the directional wave spectra; however, the amplitudes of the peaks 
in the estimates are slightly lower than the real values. Greater reductions are observed near the high-frequency peaks. The amplitude 
reduction at the spectral peaks is smaller when applying the L1 optimization (p1,r1,p2,r2) = (1, 1,1, 1). Compared with the LS method 
(p1,r1,p2,r2) = (2, 2,2, 2), the estimate of cost function (p1, r1, p2, r2) = (1,1, 1,1) shows a better concentration near the peak of each 
wave component. In summary, the proposed algorithms work stably with the lowpass filter characteristics caused by observers. 

5. Conclusion 

In this paper, the Bézier surfaces and L1 optimization are applied to estimate the in situ directional wave spectra using measured 
vessel motion responses. A stationkeeping scenario is taken as an example. Simulation results show that the Bézier surface guarantees 
the bidirectional smoothness. The L1-norms in Eq. (8) improves the robustness of the optimization problem, as compared with LS- 
based L2 optimization. When the L1-norm is applied to both the data-fitting term and the smoothness constraints, accurate esti-
mates are received with good resilience with respect to disturbances in the response spectra and subsequently the lowpass-filtered 
responses. 

The performance of the wave buoy analogy is limited by the accuracy of the selected RAOs, as well as the fact that the vessel acts as 
a lowpass filter. It is almost impossible to perfectly calculate the RAOs, due to the uncertainties of loading conditions, system line-
arization, and simplification. Future studies therefore will be focused on reducing the influences of errors in RAOs. In addition, further 
attention should be paid to the fact that vessel responses, given the size of the vessel, may not be sensitive to the high-frequency tails of 
wave spectra. In addition, the performance of the proposed method to more general and complex applications, such as vessels with 
advancing speeds, will be studied in future. 
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